16 research outputs found

    Fully-automatic inverse tone mapping algorithm based on dynamic mid-level tone mapping

    Get PDF
    High Dynamic Range (HDR) displays can show images with higher color contrast levels and peak luminosities than the common Low Dynamic Range (LDR) displays. However, most existing video content is recorded and/or graded in LDR format. To show LDR content on HDR displays, it needs to be up-scaled using a so-called inverse tone mapping algorithm. Several techniques for inverse tone mapping have been proposed in the last years, going from simple approaches based on global and local operators to more advanced algorithms such as neural networks. Some of the drawbacks of existing techniques for inverse tone mapping are the need for human intervention, the high computation time for more advanced algorithms, limited low peak brightness, and the lack of the preservation of the artistic intentions. In this paper, we propose a fully-automatic inverse tone mapping operator based on mid-level mapping capable of real-time video processing. Our proposed algorithm allows expanding LDR images into HDR images with peak brightness over 1000 nits, preserving the artistic intentions inherent to the HDR domain. We assessed our results using the full-reference objective quality metrics HDR-VDP-2.2 and DRIM, and carrying out a subjective pair-wise comparison experiment. We compared our results with those obtained with the most recent methods found in the literature. Experimental results demonstrate that our proposed method outperforms the current state-of-the-art of simple inverse tone mapping methods and its performance is similar to other more complex and time-consuming advanced techniques

    Fully-automatic inverse tone mapping preserving the content creator's artistic intentions

    Get PDF
    High Dynamic Range (HDR) displays can show images with higher color contrast levels and peak luminosities than the common Low Dynamic Range (LDR) displays. However, most existing video content is recorded and/or graded in LDR format. To show this LDR content on HDR displays, a dynamic range expansion by using an Inverse Tone Mapped Operator (iTMO) is required. In addition to requiring human intervention for tuning, most of the iTMOs don't consider artistic intentions inherent to the HDR domain. Furthermore, the quality of their results decays with peak brightness above 1000 nits. In this paper, we propose a fully-automatic inverse tone mapping operator based on mid-level mapping. This allows expanding LDR images into HDR with peak brightness over 1000 nits, preserving the artistic intentions inherent to the HDR domain. We assessed our results using full-reference objective quality metrics as HDR-VDP-2.2 and DRIM. Experimental results demonstrate that our proposed method outperforms the current state of the art

    Examen de Señales Y Sistemas del 2012-2S de la 2° evaluación

    No full text
    corecore